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Abstract
Creating a reliable wake word detection system for custom wake words poses a significant challenge, particularly
in low-resource languages where the scarcity of available data sources is a major hurdle. Moreover, collecting
an adequately voluminous dataset that includes both positive and negative samples entails substantial financial
costs and significant time expenditures. To address this problem, we propose a cost-efficient approach to
enrich a small set of collected custom samples. We provide a range of techniques for preprocessing, data
augmentation, and noise synthesis to expand the positive samples. In addition, we automatically extracted
specifically chosen negative samples from an existing speech dataset. The augmented data is utilized for the
training of a neural network-based detector through the utilization of Mycroft Precise. The results demonstrate an
improved production-grade performance, which can be vastly used in embedded devices and custom virtual assistants.
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1. Introduction

Wake word detection involves the identification of
a particular spoken word or phrase that triggers
the activation of a speech recognition system, such
as smart virtual assistants Jose et al. (2020). In
recent times, there has been a rising trend where
companies and individuals are creating their own
special wake word detection systems to make their
products better and link them to specific brands
or products. Such systems must exhibit a high
degree of accuracy and low latency. However, cre-
ating a reliable wake word detector for personalized
wake words on embedded devices is challenging
due to resource constraints, far-field detection, and
the costs of collecting custom training data. Ad-
ditionally, achieving a minimal false alarm rate is
essential in smart devices to uphold user privacy
and reduce unnecessary or disruptive device acti-
vations.

Several approaches have been suggested for
wake word detection in the past years Sainath and
Parada (2015); Chen et al. (2014); Wilpon et al.
(1991); Huggins-Daines et al. (2006); Panchapage-
san et al. (2016). In the majority of these methods,
a key factor in obtaining an accurate low-latency
detector involves training the model with an ex-
tensive amount of wake-word-specific data. The
dataset should include samples from a variety of
speakers in a variety of noisy environments, along
with negative samples that closely resemble wake
words. Creating such a dataset can be costly. How-
ever, employing blind sampling methods like those
in Sainath and Parada (2015); Chen et al. (2014)
doesn'’t lead to an optimized model. To address
this challenge, we propose a method for training a
wake-word model using a significantly limited set
of gathered wake word samples for Persian, a low-

resource language. We collected 1350 wake-word
utterances (30 minutes) from 70 speakers, and did
not utilize any self-collected negative data. Instead,
we extracted all negative samples from available
speech datasets like Common Voice !, which is
a crowdsourced speech recognition dataset sup-
porting more than 100 languages. To enhance the
dataset, we integrate a range of augmentation and
generation techniques found in existing literature
Ghosh et al. (2022); Gao et al. (2020), along with
our own discoveries, to expand the limited training
dataset. The suggested methods proved effective
in enhancing the robustness of the wake word de-
tector. We utilize a Mycroft Precise DNN-based
model 2, and our methods were used to train and
develop the model.

In this paper, we present a model and several
data augmentation methods to train a robust wake
word detector with just a limited number of self-
collected wake word samples. Our approach pro-
vides a model development framework to help re-
searchers and companies reduce the time and cost
of collecting training data for custom wake word de-
tection.

2. Related work

Several wake word detection models and engines
have been developed in recent years. Some of
them such as Porcupine® are not open source al-
though show high performance. HMM models are
also widely used for wake word detection Rose and
Paul (1990); Wilpon et al. (1991); Huggins-Daines
et al. (2006). A highly used example of HMM is

'https://commonvoice.mozilla.org
2https://github.com/MycroftAl/mycroft-precise
Shttps://picovoice.ai/platform/porcupine/



Pocketsphinx Huggins-Daines et al. (2006). In re-
cent years, DNN-based models, including CNN and
RNN models, have improved performance com-
pared to HMM-based ones Panchapagesan et al.
(2016); Wollmer et al. (2013). Additionally, TDNN-
HMM Sun et al. (2017) from Amazon Alexa and Ap-
ple’s Siri Sigtia et al. (2018) presents a production-
grade low-resource model that trains DNN-HMM
model with a million utterances of the trigger phrase.
Mycroft Precise is also a renowned open-source
engine that employs lightweight RNN architecture.

In terms of training data, however, most of the
available wake word detection models require a
large number of custom wake word utterances
(e.g. more than 10 hours) which could be both
costly and time-consuming to collect. Some re-
search proposed solutions to train models with a
low number of samples, such as Hossain and Sato
(2021). They mainly rely on crowd-sourcing to col-
lect all negative and positive utterances, which is
still expensive and time-consuming. Others, such
as Gao et al. (2020), present a method to extract
close fake words using ASR systems from untran-
scribed speech datasets. This approach needs a
stable and accurate ASR system, which may not be
available for all languages, especially low-resource
ones. Another approach suggested in Ghosh et al.
(2022) is called Knowledge Distillation, in which stu-
dent wake word detectors are trained using a large
teacher model that, in turn needs more than 2000
hours of speech data; a dataset that cannot be
easily found in many low resource languages. To
overcome the training data constraints we explored
techniques for enriching a small set of collected
data to maximize its utility.

3. Data Preprocessing and
Augmentation

In this section, we describe our approach for gener-
ating a wake word detection model for low-resource
languages (i.e. Persian) with a limited number of
wake word samples. As shown in Figure 1, our ap-
proach consists of several steps, including data pre-
processing, augmentation, and incremental training
techniques to improve the model’s performance.

We did not collect any recorded negative voice
samples. Instead, the negative samples are ex-
tracted from Common Voice transcribed dataset in
three rounds of negative collection.

3.1. Confusion words Extraction

As suggested in Gao et al. (2020), confusion words
are extracted based on their phonetics, IPA, and
Levenshtein distance Navarro (2001) from the wake
word phonetics. They are phonetically similar

words in the language and can be recorded or ex-
tracted from available speech datasets.

To ensure that the wake word detection model
can distinguish words that are similar but not equal
to the wake word, we extract confusion words from
the transcribed data. We use a Persian phonetic
dictionary and compute the Levenshtein distance
between the wake word and all the words in the
dictionary. In this process, the weight of Persian
vowels such as ’'a), ’e’, 'u’, 'i’, 'o’ is increased, as we
noticed that vowels have a greater impact on word
pronunciation, and doing this can help to identify
similar words to the wake word better.

Subsequently, we assemble a list of words
closely phonetically resembling the wake word and
locate them within the Common Voice dataset, en-
abling us to extract corresponding audio recordings
containing these similar words. To extract the au-
dio containing only the target word, we divide the
audio into the number of characters in the sentence
and extract the sound corresponding to the word
based on its position in the sentence. In contrast
to employing a ASR system, this approach not only
offers faster and more cost-effective results but is
also particularly optimal for low-resource languages
lacking high-quality ASR systems. The reason is
that, despite the fact that we have low-quality ASR
systems, we can still benefit from a limited properly
transcribed voice dataset, such as Common Voice.

3.2. Negative learning over large
negative set

Identifying and utilizing confusion voice patterns
that can cause false positives is another significant
aspect of our approach. These patterns do not
emerge when individual words are uttered. They
can be heard in more extended pieces of speech
where a stream of words contains patterns indistin-
guishable from the target wake word.

We employ a negative learning and incremental
training approach to retrain the model using false
positives. The confusion voice patterns are ex-
tracted from the speech pattern of a large audio
set that does not contain the exact wake word. We
repeat the training several times; after each, the
false positive samples are fed into the model as
part of the training data.

3.3. Wake Word-based Negative Data

To enhance the ability of the model to distinguish
speeches similar to the wake word from a true wake
word instance, we generate wake-word-based neg-
ative samples. For this, we randomly select one or
two phonemes (300 milliseconds) from true wake
word samples, mix them with (300 milliseconds)
of the noise audio, then use the new noise audio
as negative data. This leads the model to become
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Figure 1: Wake word training system.

more sensitive to the presence of all parts of the
wake word and do not get tricked with just stressed
micro phonemes. This idea is inspired by the ap-
proach introduced in Wang et al. (2023) for face
recognition where they generate negative samples
by masking pieces of image in positive samples,
and the results showed an enhanced model perfor-
mance.

3.4. Noise synthesize

Considering prior research findings that highlight
the advantages of incorporating noise and simu-
lating various environmental sounds Seltzer et al.
(2013); Gibson et al. (2018), we explored its impact
on our wake word detection model. In fact, smart
assistants are expected to be able to recognize the
wake word in diverse noise conditions, while simul-
taneously avoiding erroneous detections of noise
as positive wake words. In order to enrich our avail-
able set of positive samples, we incorporate five
different signal-to-noise (SNR) ratios. We combine
each training sample, both positive and negative,
with four different randomly selected noise types
with varying levels of SNR (5, 15, 25, and 35), as
well as with a real-world noise. This approach has
shown a significant effect on boosting the model
performance.

4. Experiment

4.1.

The baseline model we use in this work is a modi-
fied version of the Precise engine , which employs
a single recurrent neural network - specifically, a

Model Architecture

GRU - for wake word detection. We fine-tuned the
hyperparameters of the network, in order to reduce
the bias and enhance the discrimination ability of
the model. However, we observed that increasing
the robustness of the train and test sets to better
reflect real-life conditions led to an increase in bias,
making it difficult for the model to distinguish be-
tween positive and negative instances. After testing
various hyperparameters, we found that increasing
the number of units to 113 led to the best model opti-
mization. Our model resembles the Precise engine
model pipeline 4,in that 16000 sample rate audio
is buffered with 1.5 seconds sliding windows at a
time interval of 0.1 seconds before being passed
through a 13 n_mfcc and 512 n_fft feature extractor.
The extracted features are then fed into the GRU
with 113 units.

4.2. Dataset

To ensure the robustness of our wake word detec-
tion model, we carefully prepared our dataset. We
chose the wake word "Smarta" and collected a total
of 1350 utterances from 70 speakers. The utter-
ances were recorded using a close-talk microphone
by native Persian speakers in a quiet environment.
Each audio sample is two seconds long. To create
negative samples for training, we extracted confu-
sion samples from the Common Voice dataset, as
described in Section 3.1.

Since "Smarta" does not exist in the Persian lan-
guage, we consider all the words in the Common
Voice dataset as potential negative data samples.
This allows us to generate a diverse set of chal-

“https://github.com/MycroftAl/mycroft-precise



lenging negative samples that are not easily distin-
guishable from positive samples.

Samples Label Train Test
Smarta P 950 400
Random negative words N 900 400
Confusion words N 900 400
False positives generated in Negative learning N 3600 1500
Wake word-based negative data N 1200 600
Random environment noise N 2000 1000

Table 1: clear dataset (without noise) statistics (P:
positive, N: negative)

4.3. Experimental Setup

We offer two evaluation datasets for the presenta-
tion of our findings. In both test datasets, the data
was meticulously gathered to ensure that none of
it was utilized in the model’s training process.

1. The Details of test sets are shown in Table 1.
A key note to be mentioned is that to test the
robustness of our model in different noise con-
ditions, we randomly synthesized these sam-
ples with the Demand noise dataset Thiemann
et al. (2013) in snr5, snr15, snr25, and snr35.
We combined the generated noisy samples
with the original samples.

2. The second test set, known as the Persian Vox
dataset °, encompasses 56 hours of Persian
speech data. Our evaluation includes mea-
surements of the model’s performance and the
rate of false positives per hour across the entire
Vox dataset. The dataset is diverse and rep-
resentative of real-world scenarios, which en-
sures the effectiveness of the proposed wake
word detection model.

We trained and tested five wake word detection
models using different training setups in our exper-
iments. The baseline setup used "Smarta" and
randomly selected negative words for training, as
shown in Table 1. In the NS setup, we added
noise-synthesized versions of Smarta and nega-
tive samples at four different SNR levels to the
training data. For NS+NL, we additionally included
noise-synthesized versions of false positives gen-
erated during negative learning. The NS+NL+CW
setup further included noise-synthesized versions
of confusion words in addition to the previously men-
tioned samples. Finally, in the NS+NL+CW+WWB
setup, we also included noise-synthesized versions
of wake word-based samples in addition to the other
samples.

4.4. Results

As seen in Figure 2, each method contributes to im-
proving the robustness of the model. Adding False
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Figure 2: Wake word training system.

positives generated in Negative learning shows the
highest improvement, and adding each part of the
negative set helps the model to better classify be-
tween the wake word and confusion voices. Ad-
ditionally, the model that uses all the presented
techniques outperforms the other models on the
second test set, as shown in Table 2.

In Table 2, we can observe a performance com-
parison between our top-performing model and
the Porcupine wake word detector. Our model
demonstrates superior performance, boasting a
7.6% lower false rejection rate when compared to
Porcupine.

Training set WER rate
Porcupine 0.32
Baselines 0.313

NS 0.29

NS + NL 0.28

NS + NL + CW 0.27

NS + NL + CW + WWB 0.244

Table 2: Experimental results

5. Conclusions

In this study, we introduced a cost-effective ap-
proach to enhance a wake word detection model for
the low-resource language, Persian. We expanded
our dataset with preprocessing, data augmenta-
tion, and noise synthesis, using both positive and
negative samples. Our neural network-based de-
tector, trained with this enriched data using Mycroft
Precise, demonstrated significant performance im-
provements. This approach proves effective for
enhancing model performance in the absence of
extensive datasets.


https://librivox.org/

6. Bibliographical References

Guoguo Chen, Carolina Parada, and Georg
Heigold. 2014. Small-footprint keyword spotting
using deep neural networks. In 2014 IEEE Inter-
national Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 4087-4091.

Yixin Gao, Yuriy Mishchenko, Anish Shah, Spyros
Matsoukas, and Shiv Vitaladevuni. 2020. To-
wards data-efficient modeling for wake word spot-
ting. In ICASSP 2020 - 2020 IEEE International
Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 7479-7483.

Arindam Ghosh, Mark Fuhs, Deblin Bagchi, Bah-
man Farahani, and Monika Woszczyna. 2022.
Low-resource Low-footprint Wake-word Detec-
tion using Knowledge Distillation. In Proc. Inter-
speech 2022, pages 3739-3743.

Matthew Gibson, Christian Plahl, Puming Zhan,
and Gary Cook. 2018. Multi-condition deep
neural network training. In Studientexte zur
Sprachkommunikation: Elektronische Sprachsig-
nalverarbeitung 2018, pages 77-84. TUDpress,
Dresden.

Delowar Hossain and Yoshinao Sato. 2021. Effi-
cient corpus design for wake-word detection. In
2021 IEEE Spoken Language Technology Work-
shop (SLT), pages 1094—1100.

D. Huggins-Daines, M. Kumar, A. Chan, A.W. Black,
M. Ravishankar, and A.l. Rudnicky. 2006. Pock-
etsphinx: A free, real-time continuous speech
recognition system for hand-held devices. In
2006 IEEE International Conference on Acous-
tics Speech and Signal Processing Proceedings,
volume 1, pages |-I.

Christin Jose, Yuriy Mishchenko, Thibaud
Senechal, Anish Shah, Alex Escott, and Shiv
Vitaladevuni. 2020. Accurate detection of wake
word start and end using a cnn. arXiv preprint
arXiv:2008.03790.

Gonzalo Navarro. 2001. A guided tour to approx-
imate string matching. ACM Comput. Surv.,
33(1):31-88.

Sankaran Panchapagesan, Ming Sun, Aparna
Khare, Spyros Matsoukas, Arindam Mandal,
Bjorn Hoffmeister, and Shiv Vitaladevuni. 2016.
Multi-Task Learning and Weighted Cross-Entropy
for DNN-Based Keyword Spotting. In Proc. Inter-
speech 2016, pages 760—764.

R.C. Rose and D.B. Paul. 1990. A hidden markov
model based keyword recognition system. In

International Conference on Acoustics, Speech,
and Signal Processing, pages 129-132 vol.1.

Tara N. Sainath and Carolina Parada. 2015. Con-
volutional neural networks for small-footprint key-
word spotting. In Proc. Interspeech 2015, pages
1478-1482.

Michael L. Seltzer, Dong Yu, and Yonggiang Wang.
2013. An investigation of deep neural net-
works for noise robust speech recognition. In
2013 IEEE International Conference on Acous-
tics, Speech and Signal Processing, pages 7398-
7402.

Siddharth Sigtia, Rob Haynes, Hywel Richards,
Erik Marchi, and John Bridle. 2018. Efficient
voice trigger detection for low resource hardware.
In Proc. Interspeech 2018, pages 2092-2096.

Ming Sun, David Snyder, Yixin Gao, Varun Na-
garaja, Mike Rodehorst, Sankaran Panchapage-
san, Nikko Strém, Spyros Matsoukas, and Shiv
Vitaladevuni. 2017. Compressed time delay neu-
ral network for small-footprint keyword spotting.
In Interspeech 2017.

Joachim Thiemann, Nobutaka lto, and Emmanuel
Vincent. 2013. The Diverse Environments Multi-
channel Acoustic Noise Database (DEMAND):
A database of multichannel environmental noise
recordings. In 21st International Congress on
Acoustics, Montreal, Canada. Acoustical Society
of America. The dataset itself is archived on
Zenodo, with DOI 10.5281/zenodo.1227120.

Zhongyuan Wang, Baojin Huang, Guangcheng
Wang, Peng Yi, and Kui Jiang. 2023. Masked
face recognition dataset and application. IEEE
Transactions on Biometrics, Behavior, and Iden-
tity Science, pages 1-1.

J.G. Wilpon, L.G. Miller, and P. Modi. 1991. Im-
provements and applications for key word recog-
nition using hidden markov modeling techniques.
In [Proceedings] ICASSP 91: 1991 International
Conference on Acoustics, Speech, and Signal
Processing, pages 309-312 vol.1.

Martin Wéllmer, Bjoérn Schuller, and Gerhard
Rigoll. 2013. Keyword spotting exploiting long
short-term memory. Speech Communication,
55(2):252-265.


https://doi.org/10.1109/ICASSP.2014.6854370
https://doi.org/10.1109/ICASSP.2014.6854370
https://doi.org/10.1109/ICASSP40776.2020.9053313
https://doi.org/10.1109/ICASSP40776.2020.9053313
https://doi.org/10.1109/ICASSP40776.2020.9053313
https://doi.org/10.21437/Interspeech.2022-529
https://doi.org/10.21437/Interspeech.2022-529
https://www.essv.de/pdf/pdf/2018_77_84.pdf
https://www.essv.de/pdf/pdf/2018_77_84.pdf
https://doi.org/10.1109/SLT48900.2021.9383569
https://doi.org/10.1109/SLT48900.2021.9383569
https://doi.org/10.1109/ICASSP.2006.1659988
https://doi.org/10.1109/ICASSP.2006.1659988
https://doi.org/10.1109/ICASSP.2006.1659988
https://doi.org/10.48550/arXiv.2008.03790
https://doi.org/10.48550/arXiv.2008.03790
https://doi.org/10.1145/375360.375365
https://doi.org/10.1145/375360.375365
https://doi.org/10.21437/Interspeech.2016-1485
https://doi.org/10.21437/Interspeech.2016-1485
https://doi.org/10.1109/ICASSP.1990.115555
https://doi.org/10.1109/ICASSP.1990.115555
https://doi.org/10.21437/Interspeech.2015-352
https://doi.org/10.21437/Interspeech.2015-352
https://doi.org/10.21437/Interspeech.2015-352
https://doi.org/10.1109/ICASSP.2013.6639100
https://doi.org/10.1109/ICASSP.2013.6639100
https://doi.org/10.21437/Interspeech.2018-2204
https://doi.org/10.21437/Interspeech.2018-2204
https://www.amazon.science/publications/compressed-time-delay-neural-network-for-small-footprint-keyword-spotting
https://www.amazon.science/publications/compressed-time-delay-neural-network-for-small-footprint-keyword-spotting
https://doi.org/10.5281/zenodo.1227120
https://doi.org/10.5281/zenodo.1227120
https://doi.org/10.5281/zenodo.1227120
https://doi.org/10.5281/zenodo.1227120
https://doi.org/10.1109/TBIOM.2023.3242085
https://doi.org/10.1109/TBIOM.2023.3242085
https://doi.org/10.1109/ICASSP.1991.150338
https://doi.org/10.1109/ICASSP.1991.150338
https://doi.org/10.1109/ICASSP.1991.150338
https://doi.org/https://doi.org/10.1016/j.specom.2012.08.006
https://doi.org/https://doi.org/10.1016/j.specom.2012.08.006

	Introduction
	Related work
	Data Preprocessing and Augmentation
	Confusion words Extraction
	Negative learning over large negative set
	Wake Word-based Negative Data
	Noise synthesize

	Experiment
	Model Architecture
	Dataset
	Experimental Setup
	Results

	Conclusions
	Bibliographical References

