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ABSTRACT
Task-oriented dialogue systems require developing a natural lan-
guage understanding (NLU) component to extract semantic frames
of user utterances. NLU is composed of two tasks: intent detection
and slot filling. Learning these two tasks jointly has been shown
to be effective in achieving the best performance. We propose a
novel joint model called SIDA (slot filling and intent detection with
adapters) to improve the performance of NLU. In SIDA, we include
adapter layers in pre-trained language models and fine-tune only
those during task learning. Experiments on five public datasets
show that SIDA is more effective and efficient compared to the
previous methods, especially for low-resource settings.
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1 INTRODUCTION
The task-oriented dialogue system is the basis of virtual assistants
like Alexa, Siri, Cortana, and Portal has been increasingly used in
modern society; users interact with them across different domains
to complete diverse tasks and achieve their specific goals [14]. A
key component of these task-oriented dialogue systems is Natural
Language Understanding (NLU) which aims to derive the intent
of users and fill the value for the slots of the utterance [22, 29].
For example, in the utterance "Play a chant by Mj Cole", a dialogue
system should correctly identify that the user’s intention is to give
a command to play a song, and that Mj Cole is the artist name that
the user would like to listen.
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In recent years, various neural-network based models have been
experimented on slot filing (SF) and intent detection (ID) tasks sep-
arately. These proposed methods could handel several challenges,
such as out-of-vocabulary words and long-distance dependency
between words.

Recent research in this area has focused on joint model train-
ing [2, 21, 22, 29, 34] to better exploit the shared knowledge between
these tasks and model the relationship between these two tasks
simultaneously. Joint models based on pre-trained language models
are the state of the art in NLU [2, 21].

Despite significant advances in joint models, achieving the best
performance requires fine-tuning all pre-trained language model
parameters, which is not optimal for low-resource datasets [7, 16].
Recently, adapters have been introduced as an alternative method
in NLP applications when datasets are small [8, 19]. Adapter tuning
consists of freezing pre-trained parameters of a model and adding
lightweight modules between layers in transformers. Adapter-based
models achieve the same levels of performance as fine-tuning but
with an efficient number of parameters and lower training time.

The adapter architecture has not been applied in slot filling
and intent detection problems yet. This paper proposes SIDA, a
framework that jointly models slot filling and intent detection with
training adapters in parallel. Our model achieves better slot filling
performance on five public datasets.

Our contributions are twofold: (1) developing an adapter-based
joint model for slot filling and intent detection using a variety of
adapter combinations based on the stack, in parallel, and fusion
architectures. To the best of our knowledge, we are the first to
propose an adapter-based joint model with pre-trained language
models for slot filling and intent detection. By incorporating this
architecture promised a booster performance in terms of training
time and model storage of SIDA; (2) demonstrating promising re-
sults of SIDA on five public datasets, and especially for low-resource
settings.

2 RELATEDWORK
Slot filling and intent detection. There exists various approaches,

from traditional methods to deep learning methods, to solve this
problem. Both traditional approaches [5] such as conditional ran-
dom field (CRF) and deep learning methods [4, 11, 15] such as
Recurrent Neural Networks (RNN) have been explored thoroughly
and achieved comparable results. By improving upon RNNmethods
to overcome the challenges such as vanishing / exploding gradient,
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these new methods (LSTM, bidirectional methods, CNN) had devel-
oped and applied on solving slot filling [10, 26]. Other researchers
combined LSTM with CRF to first complete the slot labeling task
and included a regression model to capture label dependencies [31].
Also, [10] proposed leveraging sentence-level information with
encoder LSTM for slot filling. [24] proposed encoder-decoder with
jointly generate delexicalised sentences for slot filling. This ap-
proach is based on how different words that correspond to the same
slot play a similar semantic and syntactic role in the sentence.

Prior work has shown that the attention mechanism helps RNNs
deal with long-range dependencies. Therefore several methods
applied attention to solving slot filing problem [9].

Recently, several joint models for intent detection and slot filling
have proposed and achieved the state-of-the-art performance; This
performance shows that there exist dependencies between the two
tasks [12, 25, 27, 28, 33].

Adapters in NLP. Adapters have been applied in NLP tasks such
as text classification, machine translation, transfer learning, and
cross-lingual transfer [19]. To our best knowledge, slot filling and
intent detection do not use adapters.

3 PROBLEM DEFINITION
The key component of dialog system is the NLU component re-
sponsible to the intent of the user in a certain part of the dialogue,
associate it with a number of slot-value pairs that need to be filled
to accomplish the intent. Table 1 shows an example of intent de-
tection and slot filling for the utterance “Play a chant by Mj Cole”.
Slot filling can be taken as a sequence labeling task to identify a
slot label sequence (e.g., O, B-music-item, B-artist, I-artist, etc.) to
extract semantic concepts and detect intent as a classification task
for determining utterance’s user (e.g., Play Music). We formulate
intent detection and slot filing as follows:

Intent Detection (ID). Based on an input utterance
𝑋 = (𝑥1, 𝑥2, . . . , 𝑥𝑛), intent detection can be described as a classifi-
cation task that outputs over utterances, where the system assigns
a label 𝑦 to each utterance for detection of the intended query.

Slot Filling (SF). This one can be viewed as a token-level tag-
ging mechanism that maps an input utterance 𝑋 into a slot output
sequence 𝑆 = (𝑠1, 𝑠2, . . . , 𝑠𝑛).

The goal is to learn a probabilistic model to estimate 𝑝 (𝑦, 𝑆 |𝑋,Θ)
where Θ is the parameter of the model.

4 APPROACH
4.1 Adapter
Adapters are small modules for specific tasks that are added within
layers in transformers [8]. Adapters are effective due to three addi-
tional factors: 1) The adapter parameters are updated during the
training while the weights of the original pre-trained language
model are frozen; 2) Fine-tuning the pre-trained parameters is not
required; 3) Adapters do not need to adjust all pre-trained model pa-
rameters, and in fact, they may introduce a number of task-specific
parameters. Figure 1 shows the structure of an adapter utilized in
this work.

Table 1: An example of an utterance from the SNIPS dataset.
Slot labels are in IOB format.

Sentence Play a chant by Mj Cole

Slots O O B-music-item O B-artist I-artist
Intent PlayMusic

Layer Norm 

Layer Norm 

Multi-Head Attention

Adapter

Adapter

Feed Forward

Transformer Layer 

Nonlinearity

Feed Forward uo 
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Adapter Layer 

Feed Forward uo 
Projection

Figure 1: Adapter module architecture and integration with
Transformer. Left: The adapter module is added twice to
each Transformer layer: after the projection following multi-
headed attention and after the two feed-forward layers.
Right: The adapter consists of a bottleneck that contains
only a few parameters compared to the attention and feed-
forward layers in the original model [8].

Adapter layers can be described as follows: suppose that our
adapter layer is represented by a function𝐴. However,𝑊 𝐸 projects
the inputs to a smaller dimension,𝑊𝐷 projects them back to the
original dimension, 𝑏𝐸 and 𝑏𝐷 are the corresponding biases, and 𝑓

is a nonlinear function.

𝐴(ℎ 𝑗 ) =𝑊𝐷 (𝑓 (𝑊 𝐸ℎ 𝑗 + 𝑏𝐸 )) + 𝑏𝐷 (1)

4.2 SIDA Method
Multiple adapters trained on different tasks can be combined in
different ways when using adapters. In Pfeiffer et al. [19], a stack
of adapters is applied for the cross-lingual transfer. The knowledge
of multiple adapters can be combined into new downstream tasks
using the fusion of adapters in non-destructively [17]. Using the
parallel adapter block, parallel multi-task can be performed by
different adapters. There are separate prediction heads for each
adapter. Parallel adapters are used in inference by Rücklé et al. [23].
Training multiple adapters simultaneously and independently is
possible by sharing all the parameters pre-trained.
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Figure 2: overall architecture of SIDA-P method

We propose the parallel adapter-based architecture for intent
detection and slot filling. We have injected bottleneck adapters
in BERT’s transformer layers. Figure 2 shows how we insert four
adapters in each transformer layer: two after the multi-head atten-
tion layer and two others after the feed-forward layer. Each two
adapters for target tasks are trained simultaneously.

Parallel adapter block comprises two types of adapters: intent
adapter (ID) and slot adapter (SF). These two adapters are formu-
lated as follow, where 𝐴𝑖 is the intent adapter and 𝐴𝑠 is the slot
adapter. Suppose 𝐴𝑝 for the parallel adapter block that performs
the operations in parallel before merging their output.

𝐴𝑖 (ℎ 𝑗 ) =𝑊𝐷 (𝑓 (𝑊 𝐸ℎ 𝑗 + 𝑏𝐸 )) + 𝑏𝐷 (2)

𝐴𝑠 (ℎ 𝑗 ) =𝑊𝐷 (𝑓 (𝑊 𝐸ℎ 𝑗 + 𝑏𝐸 )) + 𝑏𝐷 (3)
𝐴𝑝 (ℎ 𝑗 ) = 𝐴𝑖 (ℎ 𝑗 ) +𝐴𝑠 (ℎ 𝑗 ) (4)

5 EXPERIMENT SETUP
In this section, we introduce the datasets, metrics, and baselines.

Datasets. We show the effectiveness of our model in five public
datasets: ATIS [13], SNIPS [3], MultiWoz [32], TaskMaster-1 [1], and
CamRest [30]. A summary of the datasets and their key properties
are shown in Table 2. ATIS and SNIPS are two commonly used
benchmarks in slot filling and intent detection. The majority of
research on natural language understanding has used these two
datasets. However, these datasets are small, simple, and single-turn.
Therefore, we consider assessing our model on more complex, more
significant, and multi-turn datasets; these additional three datasets
are related to task-oriented dialog systems. Multiwoz is one of the
large, multi-domain, multi-turn datasets gathered by the Wizard
of Oz method. Taskmaster-1 is another multi-domain dataset that
includes six domains containing 13,215 dialogs, including 5,507
spoken and 7,708 written dialogs. Compared with the Multiwoz
dataset, Taskmaster-1 is complicated to adapt due to its richness and
divergence in language and unique words. To create TaskMaster-1,

Table 2: Statistics and Properties of Datasets

DataSet ATIS SNIPS CamRest MultiWoz TaskMaster-1

Train 4,478 13,084 3342 113,500 141,247
Val 500 700 1070 14,730 17,556
Test 893 700 1076 14,744 17,633
Intent types 21 15 1076 36 6
Slot types 120 72 57 120 88

two procedures were utilized: Wizard of Oz and self-dialogs, and in
this paper, we use self-dialogs conversations. CamRest is a single-
domain (restaurant reservations) human-to-human conversation
dataset (approximately 676 dialogues). This dataset is smaller than
Multiwoz and Taskmaster-1 datasets, single-domain and multi-turn.

Evaluation metrics. We evaluate the performance of slot filing by
reporting the F1 score and intent prediction with accuracy. Also, we
use a sentence-level semantic frame to evaluate the model’s overall
accuracy [29]. To calculate the overall accuracy, an utterance counts
as correct if its intent and slots exactly match its ground truth.

Baseline and settings. Based on the existing baselines, we com-
pared our model with:

• JointBert [2]: slot filling and intent detection are performed
by fine-tuning a pre-trained BERT model. Several layers of
transformer encoders are used to convert input into hidden
state outputs to predict slot and intent labels. JointBert uses
CLS for intent detection, and the other hidden states for slot
filling.

• Stack-Propagation [20]: Through this method, token-level
intent is predicted and used to fill in slots based on the intent
detection output as the input.

• Co-Interactive [21]: A co-interactive module can consider
cross-impacts between slot and intent by establishing a bidi-
rectional connection between the two related tasks.
Our different adapter-based methods are the followings:

• SIDA-S: A stack of adapters is trained in this method, and
the output of a slot adapter feed as an input for an intent
adapter. This method is similar to the sequential transfer
learning method.

• SIDA-F: In this method block of adapters is combined in the
fusion way.

• SIDA-P: Using this method, intent adapters and slot adapters
train simultaneously, as illustrated in Figure 2.

Training details. BERT-base-uncased is used as the pretrained
language model in all experiments [6]. We implement adapters
using AdapterHub libraries [18]. For all our experiments, we set
the learning rate as 5e-5.

Empirical Results and Discussion. Table 3 summarizes the per-
formance of different state-of-the-art models on the single turn
and multiple turn datasets (30 epochs). The empirical results show
that adapter-based methods for slot filling outperform all baselines
in both single/multi turn by 2.4% to 13.2%. In multi turn datasets,
the improvements for slot-filing are more significant. As a result,
SIDA ensures intent is only detected with about ten percent of the
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Table 3: Comparison of Methods in Multi-turn and Single-turn Datasets

Single-turn Datasets
ATIS SNIPS

Intent (Acc) Slot (F1) Overall Intent (Acc) Slot (F1) Overall

JointBert[2] 97.87 95.97 88.46 98.71 96.88 96.88
Co-Interactive + BERT[21] 98.00 96.10 88.80 98.80 97.10 93.10
Stack-Propagation + BERT[20] 97.50 96.10 88.6 99.00 97.1 92.90
SIDA-F 88.80 99.07 67.74 94.14 98.01 52.85
SIDA-S 97.08 99.50 83.00 98.14 99.26 84.60
SIDA-P 97.20 99.50 85.40 97.80 99.30 84.10

Multi-turn Datasets
CamRest MutiWoz TaskMaster-1

Intent (Acc) Slot (F1) Overall Intent (Acc) Slot (F1) Overall Intent (Acc) Slot (F1) Overall

JointBert[2] 92.50 97.75 89.31 85.40 87.60 73.90 90.25 88.66 75.21
SIDA-F 86.63 99.55 86.63 77.76 98.90 58.46 80.66 93.82 63.24
SIDA-S 91.42 99.69 83.45 82.20 98.01 66.01 87.45 95.73 69.02
SIDA-P 89.34 99.79 84.63 82.80 99.20 67.17 88.53 96.33 70.5
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Figure 3: Metrics vs. Epoch for ATIS Dataset

Table 4: Comparison of Methods in Few-Shot Samples of ATIS and SNIPS Datasets

ATIS Dataset
Sample=100 Sample=500 Sample=1000

Intent (Acc) Slot (F1) Overall Intent (Acc) Slot (F1) Overall Intent (Acc) Slot (F1) Overall

JointBert[2] 71.1 68.5 2.9 71.1 68.7 2.9 86.3 79.7 50.6
SIDA-F 70.7 92.2 2.2 70.7 92.8 4.1 73.5 96.4 20.9
SIDA-S 70.7 93.2 5.1 70.7 92.5 2.5 89.1 98.1 48.1
SIDA-P 70.8 93.8 5.6 70.8 93.4 4.1 91.5 98.7 60.2

SNIPS Dataset
JointBert[2] 88.7 9.4 0.1 89.7 19.4 3.1 95.4 62.2 22.0
SIDA-F 73.4 30.4 0.1 73.5 89.3 0.1 81.4 91.6 1.6
SIDA-S 84.2 89.1 0.1 83.4 93.4 5.2 96.1 96.2 21.1
SIDA-P 84.3 89.7 0.2 92.1 94.8 7.4 96.0 96.9 34.0

parameters as compared to other state-of-the-artmethods. The re-
sults of Table 4 for small samples also show that the adapter-based
method is more efficient than joint methods in all metrics when the
dataset is small. Figure 3 illustrates the noticeable performance ad-
vantage of adapter-based models when compared to JointBERT for
epochs less than four. SIDA-F has lower performance than SIDA-P

and SIDA-S. Compared to other methods, the adapter-based meth-
ods achieve high performance with low training epochs, have a
shorter training time, and the capacity of the model is low. In lim-
ited resources and time for model training, adapter-based methods
can perform very well in lower epochs in comparison with other
methods.
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6 CONCLUSION
We proposed a novel joint model of slot filling and intent detection
based on adapters (SIDA). To demonstrate the potential of our ap-
proach, we conducted experiments on five datasets with different
complexity and compared with standard fine-tuning baselines. The
performance of SIDA model in slot filling tasks was consistently
significant and ensured that intents were detected with an effi-
cient parameter set. We also analyzed the performance of SIDA in
low-resource settings, with small sample size, which showed how
paramater-efficient modeling using adapters is important.
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